If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+132x+96=0
a = 15; b = 132; c = +96;
Δ = b2-4ac
Δ = 1322-4·15·96
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-108}{2*15}=\frac{-240}{30} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+108}{2*15}=\frac{-24}{30} =-4/5 $
| 25p-30=15 | | 1.25e0.75(8+e)=2−1.25e0 | | 4v=8=-16 | | 3(2x+5)-x=1(3x+5) | | y+5+8.3y=8.6-9y | | M4=2x+5 | | (3y–5)=2(7y+3) | | 2w-11=21 | | 3(m+2)-4=4(m-1)-3 | | 3(2x+5)-x=3(3x+5) | | 3/0.72=12/b3 | | 12m+5=65 | | 15n-8=3=n | | 78=(8x+12) | | 3(2x+5)-x=3(2x+5 | | 3x-(x+4)=7x-5(x-3) | | 86=4x+14 | | 3(2x+5)-x=-3(2x+5) | | 2(x+4)=19+2x-11 | | -8(u+5)=-3u-20 | | 3(2x+5)-x=3(6x+5) | | 5z+23=41 | | -5x(2x-3)-5x+3=63 | | 3(2x+5)-x=5(6x+5) | | 5n+6=6(n-3) | | 17=-7x | | 33x+9=33x-99 | | 6(y+2)=-4(4y-1)+8y | | w-7w=24 | | d-17=8 | | 3y+11=9 | | -8(u+5)=3u-20 |